首页> 外文OA文献 >Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
【2h】

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

机译:基于U-Net的全脑肿瘤自动检测与分割   卷积网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major challenge in brain tumor treatment planning and quantitativeevaluation is determination of the tumor extent. The noninvasive magneticresonance imaging (MRI) technique has emerged as a front-line diagnostic toolfor brain tumors without ionizing radiation. Manual segmentation of brain tumorextent from 3D MRI volumes is a very time-consuming task and the performance ishighly relied on operator's experience. In this context, a reliable fullyautomatic segmentation method for the brain tumor segmentation is necessary foran efficient measurement of the tumor extent. In this study, we propose a fullyautomatic method for brain tumor segmentation, which is developed using U-Netbased deep convolutional networks. Our method was evaluated on Multimodal BrainTumor Image Segmentation (BRATS 2015) datasets, which contain 220 high-gradebrain tumor and 54 low-grade tumor cases. Cross-validation has shown that ourmethod can obtain promising segmentation efficiently.
机译:脑肿瘤治疗计划和定量评估的主要挑战是确定肿瘤程度。无创磁共振成像(MRI)技术已经成为一种无需电离辐射的脑肿瘤的一线诊断工具。从3D MRI体积中手动分割脑肿瘤范围是一项非常耗时的任务,其性能高度依赖于操作员的经验。在这种情况下,可靠的全自动脑肿瘤分割方法对于有效测量肿瘤程度是必要的。在这项研究中,我们提出了一种用于脑肿瘤分割的全自动方法,该方法是使用基于U-Net的深度卷积网络开发的。我们的方法在多模式脑肿瘤图像分割(BRATS 2015)数据集上进行了评估,该数据集包含220例高级别脑肿瘤和54例低级别肿瘤病例。交叉验证表明,我们的方法可以有效地获得有希望的细分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号